
Abstract
This paper investigates a novel approach of reconstructing

the principal directions of a diffusion tensor field directly from
magnetic resonance imaging (MRI) data using a tensor
tomography data acquisition approach. Because tensor
eigenvalues are assumed to be known, the reconstruction of
principal directions requires less measurements than the
reconstruction of the full tensor field. The tensor tomography
data acquisition method (rotated diffusion gradients) leads to a
unique reconstruction of principal directions while the
conventional MRI acquisition technique (stationary diffusion
gradients) leads to an ambiguous reconstruction of principal
directions if the same number of measurements are used. A
computer generated phantom was used to simulate the diffusion
tensor field in the mid-ventricular region of the myocardium.
The diffusion model in this study depends upon the fiber
structure of the myocardium. An iterative algorithm was used in
the reconstruction. Computer simulations verify that the
proposed method provides accurate reconstructions of the
principal directions of a diffusion tensor field.

I. INTRODUCTION

Magnetic resonance imaging (MRI) has been shown to be
effective for imaging diffusion tensor fields through a process
known as diffusion-weighted imaging (DWI). In some imaging
applications such as cardiac imaging, the primary objective is
to use DWI to determine the principal directions of the diffusion
tensor field where a complete understanding of the tensor field
itself is of secondary interest. It has been established for isolated
perfused myocardium that water diffusion anisotropy measured
by MRI faithfully parallels histologic anisotropy. In a cardiac
study the knowledge of the principal directions of the tensor
field provides myocardial fiber organization [1]. Myocardial
fiber architecture is a key determinant of the electrical and
mechanical properties of the myocardium. On the other hand,
the eigenvalues of the diffusion tensor in cardiac tissue may be
assumed to be known. These values are similar to diffusivities
reported in other human tissues, which are less than half the
diffusivity of water at 37o [1].

This paper is concentrated on two tasks. The first is
presentation of a novel approach of reconstruction of principal
directions directly from diffusion-weighted MRI data, assuming
known eigenvalues. Because a priori information is
incorporated, the reconstruction of principal directions requires
less measurements than in the case of the reconstruction of a full
tensor field. This can be an important asset, because some DWI
measurements strongly suffer from systematic errors such as
eddy current artifacts [2]. Reducing the number of
measurements may be beneficial when it is desired to use only
artifact-free measurements. The second goal of this paper is to
show that a MR tensor tomography diffusion-weighted imaging
(TTDWI) approach [4,5] is more effective for reconstructing
principal directions than the standard MR DWI techniques.

II. METHODS

A. DWI imaging: Tensor tomography versus the
conventional MRI technique.

One of the approaches used in DWI is projection
reconstruction (PR) imaging [3]. In PR imaging radial lines are
acquired in Fourier space instead of rectilinear lines as in 2D
Fourier transform imaging methods, for example, echo-planar
imaging (EPI). The PR signal during readout can be expressed as

 , (1)

where is the readout gradient, ρ is the spin density, γ is the
gyromagnetic ratio, G is the amplitude of the diffusion
weighting gradient, is the direction of the applied diffusion
weighting gradient, Λ is the length of one lobe of the diffusion
pulse, D is the diffusion tensor, and ∆ is the separation between
each start of the two gradient pulses.

Taking the Fourier transform of , (1) can be rewritten
as

 , (2)

where g2 is a constant and is the direction of the readout
gradient [4]. According to (2), the PR signal can be presented as
a “projection” [which is proportional to the Fourier
transform of  in (1)] of the two functions ρ and D.

The transition from (1) to (2) is made by applying the well-
known Fourier section theorem. Our goal is to reconstruct a 3D
diffusion tensor field using fully 3D reconstruction [5].
However, in the following analysis we will restrict our attention
to slice-by-slice data acquisition, where the readout direction is
defined by the projection angle θ. The necessary information is
provided by data sets with different choices of . This vector
has a direction in 3D as shown in Figure 1.

The goal behind DWI is the reconstruction of D, assuming
that ρ is a known function. In practice, ρ is reconstructed using
(2) when g is set to zero. In the conventional MR DWI technique
measurements are made with stationary diffusion gradients, i. e.

is a constant vector. The same function is either projected at
every angle θ, as in the case of PR, or acquired line by line in
Fourier space, as in the case of EPI. The standard reconstruction
technique for PR DWI is the filtered backprojection (FBP)
method, for EPI it is the Fourier inversion formula. Exponential
terms of D are reconstructed and D is obtained by taking a
logarithm. Therefore, conventional DWI provides
reconstruction of for some set of fixed . For 3D
symmetric tensor imaging it is necessary to use six different
to obtain six different data sets. By appropriate choices of ,
conventional MR DWI reconstructs the diffusion tensor
components Dxx, Dyy, etc. from six data sets.

sω t( ) ρ x( )e
iγ x Gr⋅ t

e
γ2

G
2 ω

T
D x( )ω( )Λ2 ∆ Λ 3⁄–( )–

xd∫=

Gr

ω

sω t( )

pωω θ t,( ) ρ x( )e
g

2 ω
T

D x( )ω( )–
δ x θ⋅ t–( ) xd∫=

θ

pωω θ t,( )
sω t( )

ω

ω

ω
T

Dω ω
ω
ω

Diffusion Tensor MR Imaging of Principal Directions: A Tensor Tomography Approach
V. Y. Panin, G. L. Zeng, M. Defrise, and G. T. Gullberg

University of Utah, Department of Radiology
729 Arapeen Dr., Salt Lake City, UT 84108-1218, USA.

AZ-VUB University Hospital, Free University, Division of Nuclear Medicine
B-1090 Brussels,Belgium



The tensor tomography DWI (TTDWI) approach is similar
to the PR technique but uses the rotating diffusion gradients
when is a function of θ. In order to reconstruct a 3D tensor

field, the six different should also be used and all data sets are
used simultaneously during the reconstruction process. Because
a different function is projected depending on the projection
angle, a special reconstruction technique is required [4, 5,6].

B. Parameterization and reconstruction of principal
directions when eigenvalues are known
1) 2D case

The main idea can easily be demonstrated in 2D case. The
2D tensor for each pixel can be represented in terms of known
eigenvalues and eigenvectors:

, ,  . (3)

The unknown eigenvectors can be parameterized by the angle
Φ, which ensures orthogonality and normalization:

, , . (4)

Note that Φ and Φ+π are equivalent, because the principal
eigenvectors are defined up to sign. Because the function
is the unknown variable, one can expect that only a single set of
measurements of diffusion-weighted gradients is necessary to
reconstruct principal directions.

Conventional DWI provides reconstruction of ,
where at some fixed φ. The expression

 can be rewritten:

. (5)

Equation (5) can be solved with respect to Φ:

(6)

where integers k1, k2 and k3 are chosen to ensure that
. A single measurement of diffusion-weighted

gradients provides two different Φ in general. Therefore, the
principal directions are not uniquely defined.

The source of this ambiguity can be seen from other points
of view. To define all eigenvalues and eigenvectors it is neces-

sary to know all components of a symmetrical tensor and stan-
dard MRI DWI provides reconstruction of them. Suppose we
know a priori λ1, λ2 and reconstruct, for example, Dxx (from
measurement when φ=0). Can we then define Dyy and Dxy? It is
known that two invariants exist for 2D second order tensors:

 . (7)

Given λ1, λ2, and Dxx it is clear that the sign of Dxy is not
defined.

The source of ambiguity can also be presented graphically.

Because , the value of

is the same for an equiva-

lent . According to Figure 2(a) there are two that

provide the same  in the general case.

We present here an empirical conjecture that the TTDWI
method removes this ambiguity. Our results show that the
TTDWI method derives a unique estimate of the direction of the
principal component in fewer measurements than are required
in conventional DWI. It can be shown that only one root in (6)
satisfies (5) simultaneously for all φ. In the TTDWI method we
do not reconstruct , because φ is not fixed, but instead
we reconstruct . We can only fit Φ to projection measure-
ments at the angles corresponding to one . However,
we should not have duality of Φ, because only one Φ satisfies
(5) for all φ. In the TTDWI method only projection measure-
ments over corresponding to one is necessary to
define Φ for any given pixel whereas from our above arguments
measurements for multiple are needed for the conven-
tional DWI method. Later we present a simulation that seems to
suggest that our conjecture is correct for the case we present in
the next section.

2) 3D case, primary anisotropy

This case has a simple graphical interpretation. Only the
first principal direction is to be reconstructed. The other two
eigenvectors that correspond to the same eigenvalues can be
defined arbitrarily in the plane perpendicular to the first
principal direction. The tensor components are independent of
this particular choice. We can define three eigenvectors for a
given voxel using two angles Θ and Φ (similarly ϑ and φ are
illustrated on Figure 1).

(8)

where and is only considered. Then

 is defined as and

(9)
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Figure 1. The projection geometry
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Because the two functions and are unknown,

one can expect that two measurements with two different are

necessary when reconstructing the principal directions. This is

true in the case of TTDWI, because each is a function of θ.

However in the case of conventional MR DWI, where are

fixed, it is necessary to take three measurements to uniquely

define the principal directions. Taking into account that

and , the

equation is satisfied for

equal vales of . As it can be seen in Figure 2(b), each

and define a cone. Intersection of these two cones defines

which provides the same and . In general,

there are two such  in the upper hemisphere.

3) 3D case, secondary anisotropy

The existence of secondary myocardial anisotropy in the
cross-fiber direction was previously established [1]. In this case
it is necessary to estimate all three principal directions. They
can be parameterized by three Euler’s angles: , , and

for each voxel. We omit the corresponding notation here.
The three different measurements (three different nonstationary

) may be required to reconstruct these three functions in

TTDWI. In the case of a stationary , that is conventional MR
DWI, three measurements are not enough to obtain unique
estimates of the principal directions. This can be understood in
terms of 3D tensor invariants:

. (10)

Providing, for example, Dxx, Dyy and Dxz, Dyz and Dxy are
defined up to sign change. Four measurements may be enough.
(Measurement components must be chosen carefully. It is a bad
choice to measure Dxx, Dyy and Dzz among these four

measurements. The tensor estimation still will be ambiguous.)

C. Reconstruction algorithm
For the purposes of this abstract we restricted our attention

to the more simple case of primary anisotropy. Only the first
principal direction was estimated. Since the MR DWI model in
(2) is nonlinear, the reconstruction with nonstationary
requires use of iterative methods [6,7]. In order to estimate
principal directions, the least squares differences between
modeled and measured projections can be minimized:

(11)

where

(12)

and

(13)
In order to minimize (11) with respect to the angle

functions, a gradient-type algorithm was applied. Note that the
minimization problem is complicated due to the fact that the
objective function is periodic with respect to the angle
functions; therefore, L has an infinite number of minima. We
implemented the gradient descent (GD) algorithm to minimize
L. At each iteration this algorithm updates each angle function
for a given voxel by its corresponding derivative of L. This
algorithm relies on an arbitrarily chosen relaxation parameter ε,
that defines the step size in the gradient direction. This
parameter should be small enough to not over shoot the
downhill direction. The choice of a very small value of ε leads
to slow convergence, however, it allows to stay near one of the
many minima.

III. RESULTS

A computer generated phantom was used to simulate the
diffusion that might be expected in a cardiac study. The phantom
is comprised of a circular cylindrical tube. The phantom
simulates the mid-ventricular wall of the left ventricle. The spin
density ρ is assumed to be uniform inside the phantom and zero
outside. The fiber structure of the myocardium is helical. The
principal vectors of the diffusion tensor are referenced to a
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Figure 2. The source of ambiguity in reconstruction of principal directions from data acquired by standard MR DWI when is fixed. (a) 2D
case. Given , and provide the same d. The principal vectors located in the upper half can be chosen. (b) 3D primary
anisotropy case. Two values and define two cones. The intersection of these cones in general provides the different
principal vector , that satisfies d1 and d2. The only upper hemisphere is shown.
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helical fiber structure with material coordinates (XR, XF, XC),
which are orthogonal. The fiber axis XF is located on the plane
of the wall normal to the radial axis R. The fiber angle in the
circumferential direction has a variation which is continuous
and linear. The angle changes from 60o to -60o, varying from
the endocardial to the epicardial wall in a radial direction. The
axis XC is the cross-fiber in-plane axis and the axis XR coincides
with R. The phantom was chosen to be independent of the z
coordinate so that one slice of the reconstruction was enough to
represent the entire phantom.

The phantom represented a 32x32 slice image of a
cylinder with an inner radius R1 = 7 and an outer radius R2=14.
This grid size was chosen in order to achieve a comprehensive
visualization of the vector field of the principal vector. The
eigenvalues of the myocardial diffusion tensor were λ1 = 1.6,
λ2= λ3=0.7. The spin density ρ was equal to 1 inside the
cylinder and zero outside the cylinder. The parameter g2 was
0.7, so .

The projection and backprojection operation of the GD
algorithm were implemented, using a ray-driven operator.
Thirty two projections of the slice were generated over

. The sampling bin width was equal to the
reconstructed pixel width. Two projection data sets were used
with two fully 3D rotated diffusion gradient directions

(14)

. (15)

The initial condition for the iterative algorithm was uniform:
 and  for every voxel.

Figure 3 shows the behavior of the LS norm in (11) as a
function of the iteration number. Because the data is noise-free,
the algorithm converged to L=0. We chose 4000 iterations for
the final reconstruction of the noise-free data. This
reconstruction is nearly identical to the original phantom. (The
angular difference between phantom and reconstruction
principal directions was .) A smaller iteration
number, however, can be used. Figure 4 presents the
reconstructed vector field of the first principal vector showing
the fiber structure of the heart for one transaxial slice. The first
principal direction is well reconstructed in the case of noise-
free data from only two diffusion-weighted projection data sets.

IV. DISCUSSION AND CONCLUSION

We have developed a novel approach to reconstructing
the principal directions of the diffusion tensor field. We have
also demonstrated that MR TTDWI data acquisition is more
efficient than standard MR DWI data acquisition. Further work
is needed to prove this result mathematically. Our approach
requires use of an iterative algorithm. Further work is required
to increase the convergence rate. The choice of an optimal
direction of the diffusion gradient direction during acquisition
needs further investigation. Acquisition and reconstruction of
real data is currently underway.

V. REFERENCES

[1] T. G. Reese, R. M. Weisskoff, R. N. Smith, B. R. Rosen, R. E.
Dinsmore, and V. J. Wedeen, “Imaging myocardial fiber
architecture in vivo with magnetic resonance,” Magn. Reson.
Med., vol. 34. pp.786-791, 1995.

[2] M. H. Seifert, P. M. Jakob, V. Jellus, A. Haase, and C. Hillenbrand,
“High-resolution diffusion imaging using a radial turbo-spin-echo
sequence: implementation, eddy current compensation, and self-
navigation,” J. Magn. Reson., vol. 144, pp. 243-254, 2000.

[3] A. F. Gmitro and A. L. Alexander “Use of a projection
reconstruction method to decrease motion sensitivity in diffusion-
weighted MRI,” Magn. Reson. Med., vol. 9. pp. 835-838, 1993.

[4] G. T. Gullberg, D. N. Ghosh Roy, G. L. Zeng, A. L. Alexander,
and D. L. Parker, “Tensor tomography,” IEEE Nucl. Sci., vol. 46,
pp. 991-1000, 1999.

[5] G. T. Gullberg, M. Defrise, V. Y. Panin and G. L. Zeng, “Efficient
cardiac diffusion tensor MRI by three-dimensional reconstruction
of solenoidal tensor fields,” Magn. Reson. Imag., in press, 2001.

[6] V. Y. Panin, G. L. Zeng and G. T. Gullberg, “An iterative approach
to tensor tomography,” Proceeding of the 2000 IEEE Nuclear
Science Symposium and Medical Imaging Conference, Oct. 15-
20, 2000, Lyon, France, (in press).

[7] V. Y. Panin, G. L. Zeng, G. T. Gullberg, A. L. Alexander, and D.
L. Parker, “An iterative regularized algorithm for tensor
tomography in MRI,” In Proceedings of the International Society
for Magnetic Resonance in Medicine, 9th Scientific Meeting and
Exhibition, April 21-27, 2001, Glasgow, Scotland, pp. 765.

g
2
λ1 1>

θ 0[= π ),

ω1 φ θ ϑ
θ θ π 2⁄≤,

π 2⁄ θ,– θ π 2⁄≥
=;=

 
 
 

=

ω2 φ θ π 2⁄+ ϑ
θ θ π 2⁄≤,

π 2⁄ θ– , θ π 2⁄≥
=;=

 
 
 

=

Φ π= Θ π 4⁄=

1.6
o

1.4
o

±

Figure 3. LS norm as a function of the iteration number.

Figure 4. Images of the first principal directions. (a) general view, (b) axial view.
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